User interface language: English | Español

HL Paper 3

In this question you will be exploring the strategies required to solve a system of linear differential equations.

 

Consider the system of linear differential equations of the form:

dxdt=x-y  and  dydt=ax+y,

where x, y, t+ and a is a parameter.

First consider the case where a=0.

Now consider the case where a=-1.

Now consider the case where a=-4.

From previous cases, we might conjecture that a solution to this differential equation is y=Feλt, λ and F is a constant.

By solving the differential equation dydt=y, show that y=Aet where A is a constant.

[3]
a.i.

Show that dxdt-x=-Aet.

[1]
a.ii.

Solve the differential equation in part (a)(ii) to find x as a function of t.

[4]
a.iii.

By differentiating dydt=-x+y with respect to t, show that d2ydt2=2dydt.

[3]
b.i.

By substituting Y=dydt, show that Y=Be2t where B is a constant.

[3]
b.ii.

Hence find y as a function of t.

[2]
b.iii.

Hence show that x=-B2e2t+C, where C is a constant.

[3]
b.iv.

Show that d2ydt2-2dydt-3y=0.

[3]
c.i.

Find the two values for λ that satisfy d2ydt2-2dydt-3y=0.

[4]
c.ii.

Let the two values found in part (c)(ii) be λ1 and λ2.

Verify that y=Feλ1t+Geλ2t is a solution to the differential equation in (c)(i),where G is a constant.

[4]
c.iii.

Markscheme

METHOD 1

dydt=y

dyy=dt               (M1)

lny=t+c  OR  lny=t+c             A1A1


Note: Award A1 for lny and A1 for t and c.


y=Aet             AG

 

METHOD 2

rearranging to dydt-y=0 AND multiplying by integrating factor e-t               M1

ye-t=A             A1A1

y=Aet             AG

 

[3 marks]

a.i.

substituting y=Aet into differential equation in x               M1

dxdt=x-Aet

dxdt-x=-Aet             AG

 

[1 mark]

a.ii.

integrating factor (IF) is e-1dt               (M1)

=e-t               (A1)

e-tdxdt-xe-t=-A

xe-t=-At+D               (A1)

x=-At+Det               A1


Note: The first constant must be A, and the second can be any constant for the final A1 to be awarded. Accept a change of constant applied at the end.

 

[4 marks]

a.iii.

d2ydt2=-dxdt+dydt               A1


EITHER

=-x+y+dydt               (M1)

=dydt+dydt               A1


OR

=-x+y+-x+y               (M1)

=2-x+y               A1


THEN

=2dydt               AG


[3 marks]

b.i.

dYdt=2Y               A1

dYY=2dt               M1

lnY=2t+c  OR  lnY=2t+c               A1

Y=Be2t               AG

 

[3 marks]

b.ii.

dydt=Be2t

y=Be2tdt              M1

y=B2e2t+C              A1


Note:
The first constant must be B, and the second can be any constant for the final A1 to be awarded. Accept a change of constant applied at the end.

 

[2 marks]

b.iii.

METHOD 1

substituting dydt=Be2t and their (iii) into dydt=-x+y              M1(M1)

Be2t=-x+B2e2t+C              A1

x=-B2e2t+C              AG

Note: Follow through from incorrect part (iii) cannot be awarded if it does not lead to the AG.


METHOD 2

dxdt=x-B2e2t-C

dxdt-x=-B2e2t-C

dxe-tdt=-B2et-Ce-t              M1

xe-t=-B2et-Ce-tdt

xe-t=-B2et-Ce-t+D              A1

x=-B2e2t+C+Det

dydt=-x+yBe2t=B2e2t-C-Det+B2e2t+CD=0              M1

x=-B2e2t+C              AG

 

[3 marks]

b.iv.

dydt=-4x+y

d2ydt2=-4dxdt+dydt seen anywhere              M1

 

METHOD 1

d2ydt2=-4x-y+dydt

attempt to eliminate x              M1

=-414y-dydt-y+dydt

=2dydt+3y              A1

d2ydt2-2dydt-3y=0              AG

 

METHOD 2

rewriting LHS in terms of x and y              M1

d2ydt2-2dydt-3y=-8x+5y-2-4x+y-3y              A1

=0              AG

 

[3 marks]

c.i.

dydt=Fλeλt, d2ydt2=Fλ2eλt               (A1)

Fλ2eλt-2Fλeλt-3Feλt=0               (M1)

λ2-2λ-3=0  (since eλt0)              A1

λ1 and λ2 are 3 and -1 (either order)              A1

 

[4 marks]

c.ii.

METHOD 1

y=Fe3t+Ge-t

dydt=3Fe3t-Ge-t, d2ydt2=9Fe3t-Ge-t                      (A1)(A1)

d2ydt2-2dydt-3y=9Fe3t+Ge-t-23Fe3t-Ge-t-3Fe3t-Ge-t              M1

=9Fe3t+Ge-t-6Fe3t+2Ge-t-3Fe3t-3Ge-t              A1

=0              AG

 

METHOD 2

y=Feλ1t+Geλ2t

dydt=Fλ1eλ1t+Gλ2eλ2t, d2ydt2=Fλ12eλ1t+Gλ22eλ2t                      (A1)(A1)

d2ydt2-2dydt-3y=Fλ12eλ1t+Gλ22eλ2t-2Fλ1eλ1t+Gλ2eλ2t-3Feλ1t+Geλ2t              M1

=Feλ1tλ2-2λ-3+Geλ2tλ2-2λ-3              A1

=0              AG

 

[4 marks]

c.iii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
a.iii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.
[N/A]
b.iv.
[N/A]
c.i.
[N/A]
c.ii.
[N/A]
c.iii.



In this question you will explore some of the properties of special functions f and g and their relationship with the trigonometric functions, sine and cosine.


Functions f and g are defined as fz=ez+e-z2 and gz=ez-e-z2, where z.

Consider t and u, such that t, u.

Using eiu=cosu+isinu, find expressions, in terms of sinu and cosu, for

The functions cosx and sinx are known as circular functions as the general point (cosθ, sinθ) defines points on the unit circle with equation x2+y2=1.

The functions f(x) and g(x) are known as hyperbolic functions, as the general point ( f(θ), g(θ) ) defines points on a curve known as a hyperbola with equation x2-y2=1. This hyperbola has two asymptotes.

Verify that u=ft satisfies the differential equation d2udt2=u.

[2]
a.

Show that ft2+gt2=f2t.

[3]
b.

fiu.

[3]
c.i.

giu.

[2]
c.ii.

Hence find, and simplify, an expression for fiu2+giu2.

[2]
d.

Show that ft2-gt2=fiu2-giu2.

[4]
e.

Sketch the graph of x2-y2=1, stating the coordinates of any axis intercepts and the equation of each asymptote.

[4]
f.

The hyperbola with equation x2-y2=1 can be rotated to coincide with the curve defined by xy=k, k.

Find the possible values of k.

[5]
g.

Markscheme

f't=et-e-t2                       A1

f''t=et+e-t2                       A1

=ft                       AG


[2 marks]

a.

METHOD 1

ft2+gt2

substituting f and g                      M1

=et+e-t2+et-e-t24

=et2+2+e-t2+et2-2+e-t24                      (M1)

=et2+e-t22  =e2t+e-2t2                      A1

=f2t                      AG

 

METHOD 2

f2t=e2t+e-2t2

=et2+e-t22                      M1

=et+e-t2+et-e-t24                     M1A1

=ft2+gt2                      AG


Note: Accept combinations of METHODS 1 & 2 that meet at equivalent expressions.


[3 marks]

b.

substituting eiu=cosu+isinu into the expression for f                      (M1)

obtaining e-iu=cosu-isinu                      (A1)

fiu=cosu+isinu+cosu-isinu2


Note: The M1 can be awarded for the use of sine and cosine being odd and even respectively.


=2cosu2

=cosu                      A1


[3 marks]

c.i.

giu=cosu+isinu-cosu+isinu2

substituting and attempt to simplify                      (M1)

=2isinu2

=isinu                      A1


[2 marks]

c.ii.

METHOD 1

fiu2+giu2

substituting expressions found in part (c)                     (M1)

=cos2u-sin2u  =cos2u                      A1

 

METHOD 2

f2iu=e2iu+e-2iu2

=cos2u+isin2u+cos2u-isin2u2                     M1

=cos2u                      A1


Note: Accept equivalent final answers that have been simplified removing all imaginary parts eg 2cos2u1etc


[2 marks]

d.

ft2-gt2=et+e-t2-et-e-t24                      M1

=e2t+e-2t+2-e2t+e-2t-24                      A1

=44=1                      A1


Note: Award A1 for a value of 1 obtained from either LHS or RHS of given expression.


fiu2-giu2=cos2u+sin2u                      M1

=1  (hence ft2-gt2=fiu2-giu2)                      AG


Note: Award full marks for showing that fz2-gz2=1, z.


[4 marks]

e.

        A1A1A1A1


Note: Award A1 for correct curves in the upper quadrants, A1 for correct curves in the lower quadrants, A1 for correct x-intercepts of (1, 0) and (1, 0) (condone x=1 and 1), A1 for y=x and y=x.



[4 marks]

f.

attempt to rotate by 45° in either direction               (M1)


Note: Evidence of an attempt to relate to a sketch of xy=k would be sufficient for this (M1).


attempting to rotate a particular point, eg (1, 0)               (M1)

(1, 0) rotates to 12,±12 (or similar)               (A1)

hence k=±12             A1A1


[5 marks]

g.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.i.
[N/A]
c.ii.
[N/A]
d.
[N/A]
e.
[N/A]
f.
[N/A]
g.



Consider the functions f g R × R R × R  defined by

f ( ( x , y ) ) = ( x + y , x y ) and  g ( ( x , y ) ) = ( x y , x + y ) .

Find  ( f g ) ( ( x , y ) ) .

[3]
a.i.

Find ( g f ) ( ( x , y ) ) .

[2]
a.ii.

State with a reason whether or not f and g commute.

[1]
b.

Find the inverse of  f .

[3]
c.

Markscheme

( f g ) ( ( x , y ) ) = f ( g ( ( x , y ) ) )   ( = f ( ( x y , x + y ) ) )       (M1)

= ( x y + x + y , x y x y )        A1A1

 

[3 marks]

a.i.

( g f ) ( ( x , y ) ) = g ( f ( ( x , y ) ) )

= g ( ( x + y , x y ) )

= ( ( x + y ) ( x y ) , x + y + x y )

= ( x 2 y 2 , 2 x )        A1A1

 

[2 marks]

a.ii.

no because  f g g f         R1

Note: Accept counter example.

 

[1 mark]

b.

 

f ( ( x , y ) ) = ( a , b ) ( x + y , x y ) = ( a , b )        (M1)

{ x = a + b 2 y = a b 2        (M1)

f 1 ( ( x , y ) ) = ( x + y 2 , x y 2 )         A1

 

[3 marks]

c.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.



This question asks you to explore cubic polynomials of the form x-rx2-2ax+a2+b2 for x and corresponding cubic equations with one real root and two complex roots of the form (z-r)(z2-2az+a2+b2)=0 for z.

 

In parts (a), (b) and (c), let r=1, a=4 and b=1.

Consider the equation z-1z2-8z+17=0 for z.

Consider the function fx=x-1x2-8x+17 for x.

Consider the function gx=x-rx2-2ax+a2+b2 for x where r, a and b, b>0.

The equation z-rz2-2az+a2+b2=0 for z has roots r and a±bi where r, a and b, b>0.

On the Cartesian plane, the points C1a, g'a and C2a, -g'a represent the real and imaginary parts of the complex roots of the equation z-rz2-2az+a2+b2=0.


The following diagram shows a particular curve of the form y=x-rx2-2ax+a2+16 and the tangent to the curve at the point Aa, 80. The curve and the tangent both intersect the x-axis at the point R-2, 0. The points C1 and C2 are also shown.

Consider the curve y=(x-r)(x2-2ax+a2+b2) for ar, b>0. The points A(a, g(a)) and R(r, 0) are as defined in part (d)(ii). The curve has a point of inflexion at point P.

Consider the special case where a=r and b>0.

Given that 1 and 4+i are roots of the equation, write down the third root.

[1]
a.i.

Verify that the mean of the two complex roots is 4.

[1]
a.ii.

Show that the line y=x-1 is tangent to the curve y=fx at the point A4, 3.

[4]
b.

Sketch the curve y=f(x) and the tangent to the curve at point A, clearly showing where the tangent crosses the x-axis.

[2]
c.

Show that g'x=2x-rx-a+x2-2ax+a2+b2.

[2]
d.i.

Hence, or otherwise, prove that the tangent to the curve y=gx at the point Aa, ga intersects the x-axis at the point Rr, 0.

[6]
d.ii.

Deduce from part (d)(i) that the complex roots of the equation z-rz2-2az+a2+b2=0 can be expressed as a±ig'a.

[1]
e.

Use this diagram to determine the roots of the corresponding equation of the form z-rz2-2az+a2+16=0 for z.

[4]
f.i.

State the coordinates of C2.

[1]
f.ii.

Show that the x-coordinate of P is 132a+r.

You are not required to demonstrate a change in concavity.

[2]
g.i.

Hence describe numerically the horizontal position of point P relative to the horizontal positions of the points R and A.

[1]
g.ii.

Sketch the curve y=x-rx2-2ax+a2+b2 for a=r=1 and b=2.

[2]
h.i.

For a=r and b>0, state in terms of r, the coordinates of points P and A.

[1]
h.ii.

Markscheme

4-i        A1

 

[1 mark]

a.i.

mean=124+i+4-i          A1

=4          AG

  

[1 mark]

a.ii.

METHOD 1

attempts product rule differentiation        (M1)

 

Note: Award (M1) for attempting to express fx as fx=x3-9x2+25x-17

 

f'x=x-12x-8+x2-8x+17  f'x=3x2-18x+25        A1

f'4=1        A1

 

Note: Where f'x is correct, award A1 for solving f'x=1 and obtaining x=4.


EITHER

y-3=1x-4        A1


OR

y=x+c

3=4+cc=-1        A1


OR

states the gradient of y=x-1 is also 1 and verifies that 4, 3 lies on the line y=x-1        A1


THEN

so y=x-1 is the tangent to the curve at A4, 3        AG

 

Note: Award a maximum of (M0)A0A1A1 to a candidate who does not attempt to find f'x.

 

METHOD 2

sets fx=x-1 to form x-1=x-1x2-8x+17        (M1)


EITHER

x-1x2-8x+16=0  x3-9x2+24x-16=0        A1

attempts to solve a correct cubic equation        (M1)

x-1x-42=0x=1, 4


OR

recognises that x1 and forms x2-8x+17=1  x2-8x+16=0        A1

attempts to solve a correct quadratic equation        (M1)

x-42=0x=4


THEN

x=4 is a double root        R1

so y=x-1 is the tangent to the curve at A4, 3        AG

 

Note: Candidates using this method are not required to verify that y=3.

  

[4 marks]

b.

a positive cubic with an  x-intercept x=1, and a local maximum and local minimum in the first quadrant both positioned to the left of A        A1

 

Note: As the local minimum and point A are very close to each other, condone graphs that seem to show these points coinciding.
For the point of tangency, accept labels such as A, 4,3 or the point labelled from both axes. Coordinates are not required.

 

a correct sketch of the tangent passing through A and crossing the x-axis at the same point x=1 as the curve        A1

 

Note: Award A1A0 if both graphs cross the x-axis at distinctly different points.

  

[2 marks]

c.

EITHER

g'x=x-r2x-2a+x2-2ax+a2+b2         (M1)A1


OR

gx=x3-2a+rx2+a2+b2+2arx-a2+b2r

attempts to find g'x        M1

g'x=3x2-22a+rx+a2+b2+2ar

=2x2-2a+rx+2ar+x2-2ax+a2+b2        A1

=2x2-ax-rx+ar+x2-2ax+a2+b2


THEN

g'x=2x-rx-a+x2-2ax+a2+b2        AG

  

[2 marks]

d.i.

METHOD 1

ga=b2a-r         (A1)

g'a=b2         (A1)

attempts to substitute their ga and g'a into y-ga=g'ax-a        M1

y-b2a-r=b2x-a


EITHER

y=b2x-r y=b2x-b2r        A1

sets y=0 so b2x-r=0        M1

b>0x=r OR b0x=r        R1


OR 

sets y=0 so -b2a-r=b2x-a        M1

b>0 OR b0-a-r=x-a        R1

x=r        A1

THEN

so the tangent intersects the x-axis at the point Rr, 0        AG

 

METHOD 2

g'a=b2         (A1)

ga=b2a-r         (A1)

attempts to substitute their ga and g'a into y=g'ax+c and attempts to find c        M1

c=-b2r


EITHER

y=b2x-r y=b2x-b2r        A1

sets y=0 so b2x-r=0        M1

b>0x=r OR b0x=r        R1


OR

sets y=0 so b2x-r=0        M1

b>0 OR b0x-r=0        R1

x=r        A1

 

METHOD 3

g'a=b2         (A1)

the line through Rr, 0 parallel to the tangent at A has equation
y=b2x-r        A1

sets gx=b2x-r to form b2x-r=x-rx2-2ax+a2+b2        M1

b2=x2-2ax+a2+b2, xr        A1

x-a2=0        A1

since there is a double root x=a, this parallel line through Rr, 0 is the required tangent at A        R1

 

[6 marks]

d.ii.

EITHER

g'a=b2b=g'a (since b>0)        R1


Note: Accept b=±g'a.


OR

a±bi=a±ib2 and g'a=b2        R1


THEN

hence the complex roots can be expressed as a±ig'a        AG

 

[1 mark]

e.

b=4 (seen anywhere)        A1


EITHER

attempts to find the gradient of the tangent in terms of a and equates to 16       (M1)


OR

substitutes r=-2, x=a  and  y=80 to form 80=a--2a2-2a2+a2+16       (M1)


OR

substitutes r=-2, x=a  and  y=80 into y=16x-r       (M1)


THEN

80a+2=16a=3

roots are -2 (seen anywhere) and 3±4i        A1A1

 

Note: Award A1 for -2 and A1 for 3±4i. Do not accept coordinates.

 

[4 marks]

f.i.

3, -4        A1

 

Note: Accept “x=3 and y=4”.
Do not award A1FT for (a, 4)

 

[1 mark]

f.ii.

g'x=2x-rx-a+x2-2ax+a2+b2

attempts to find g''x        M1

g''x=2x-a+2x-r+2x-2a =6x-2r-4a

sets g''x=0 and correctly solves for x        A1

for example, obtaining x-r+2x-a=0 leading to 3x=2a+r

so x=132a+r        AG


Note: Do not award A1 if the answer does not lead to the AG.

 

[2 marks]

g.i.

point P is 23 of the horizontal distance (way) from point R to point A       A1


Note: Accept equivalent numerical statements or a clearly labelled diagram displaying the numerical relationship.
Award A0 for non-numerical statements such as “P is between R and A, closer to A”.

 

[1 mark]

g.ii.

y=x-1x2-2x+5       (A1)

a positive cubic with no stationary points and a non-stationary point of inflexion at x=1       A1


Note: Graphs may appear approximately linear. Award this A1 if a change of concavity either side of x=1 is apparent.
Coordinates are not required and the y-intercept need not be indicated.

 

[2 marks]

h.i.

r, 0         A1

 

[1 mark]

h.ii.

Examiners report

Part (a) (i) was generally well done with a significant majority of candidates using the conjugate root theorem to state 4-i as the third root. A number of candidates, however, wasted considerable time attempting an algebraic method to determine the third root. Part (a) (ii) was reasonably well done. A few candidates however attempted to calculate the product of 4+i and 4-i.

Part (b) was reasonably well done by a significant number of candidates. Most were able to find a correct expression for f'(x) and a good number of those candidates were able to determine that f'(4)=1. Candidates that did not determine the equation of the tangent had to state that the gradient of y=x-1 is also 1 and verify that the point (4,3) lies on the line. A few candidates only met one of those requirements. Weaker candidates tended to only verify that the point (4,3) lies on the curve and the tangent line without attempting to find f'(x).

Part (c) was not answered as well as anticipated. A number of sketches were inaccurate and carelessly drawn with many showing both graphs crossing the x-axis at distinctly different points.

Part (d) (i) was reasonably well done by a good number of candidates. Most successful responses involved use of the product rule. A few candidates obtained full marks by firstly expanding g(x), then differentiating to find g'(x)and finally simplifying to obtain the desired result. A number of candidates made elementary mistakes when differentiating. In general, the better candidates offered reasonable attempts at showing the general result in part (d) (ii). A good number gained partial credit by determining that g'(a)=b2 and/or g(a)=b2(a-r). Only the very best candidates obtained full marks by concluding that as b>0 or b0, then x=r when y=0.

In general, only the best candidates were able to use the result g'(a)=b2 to deduce that the complex roots of the equation can be expressed as a±ig'(a). Although given the complex roots a±bi, a significant number of candidates attempted, with mixed success, to use the quadratic formula to solve the equation z2-2az+a2+b2=0.

In part (f) (i), only a small number of candidates were able to determine all the roots of the equation. Disappointingly, a large number did not state -2 as a root. Some candidates determined that b=4 but were unable to use the diagram to determine that a=3. Of the candidates who determined all the roots in part (f) (i), very few gave the correct coordinates for C2 . The most frequent error was to give the y-coordinate as 3-4i.

Of the candidates who attempted part (g) (i), most were able to find an expression for g''(x) and a reasonable number of these were then able to convincingly show that x=13(2a+r). It was very rare to see a correct response to part (g) (ii). A few candidates stated that P is between R and A with some stating that P was closer to A. A small number restated x=13(2a+r) in words.

Of the candidates who attempted part (h) (i), most were able to determine that y=(x-1)x2-2x+5. However, most graphs were poorly drawn with many showing a change in concavity at x=0 rather than at x=1. In part (h) (ii), only a very small number of candidates determined that A and P coincide at (r,0).

a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.
[N/A]
d.i.
[N/A]
d.ii.
[N/A]
e.
[N/A]
f.i.
[N/A]
f.ii.
[N/A]
g.i.
[N/A]
g.ii.
[N/A]
h.i.
[N/A]
h.ii.



This question asks you to explore the behaviour and some key features of the function fn(x)=xn(a-x)n , where a+ and n+.

In parts (a) and (b), only consider the case where a=2.

Consider f1(x)=x(2-x).

Consider fnx=xn2-xn, where n+, n>1.

Now consider fnx=xna-xn where a+ and n+, n>1.

By using the result from part (f) and considering the sign of fn'-1, show that the point 0,0 on the graph of y=fnx is

Sketch the graph of y=f1(x), stating the values of any axes intercepts and the coordinates of any local maximum or minimum points.

[3]
a.

Use your graphic display calculator to explore the graph of y=fn(x) for

•   the odd values n=3 and n=5;

•   the even values n=2 and n=4.

Hence, copy and complete the following table.

[6]
b.

Show that fn'x=nxn-1a-2xa-xn-1.

[5]
c.

State the three solutions to the equation fn'x=0.

[2]
d.

Show that the point a2, fna2 on the graph of y=fnx is always above the horizontal axis.

[3]
e.

Hence, or otherwise, show that fn'a4>0, for n+.

[2]
f.

a local minimum point for even values of n, where n>1 and a+.

[3]
g.i.

a point of inflexion with zero gradient for odd values of n, where n>1 and a+.

[2]
g.ii.

Consider the graph of y=xna-xn-k, where n+a+ and k.

State the conditions on n and k such that the equation xna-xn=k has four solutions for x.

[5]
h.

Markscheme

inverted parabola extended below the x-axis             A1

x-axis intercept values x=0,2         A1


Note: Accept a graph passing through the origin as an indication of x=0.

local maximum at 1,1                 A1


Note: Coordinates must be stated to gain the final A1.
        Do not accept decimal approximations.


[3 marks]

a.

             A1A1A1A1A1A1


Note:
Award A1 for each correct value.

For a table not sufficiently or clearly labelled, assume that their values are in the same order as the table in the question paper and award marks accordingly.


[6 marks]

b.

METHOD 1

attempts to use the product rule            (M1)

fn'x=-nxna-xn-1+nxn-1a-xn            A1A1


Note: Award A1 for a correct udvdx and A1 for a correct vdudx.


EITHER

attempts to factorise fn'x (involving at least one of nxn-1 or a-xn-1)           (M1)

=nxn-1a-xn-1a-x-x            A1


OR

attempts to express fn'x as the difference of two products with each product containing at least one of nxn-1 or a-xn-1           (M1)

=-xnxn-1a-xn-1+a-xnxn-1a-xn-1            A1


THEN

fn'x=nxn-1a-2xa-xn-1            AG


Note: Award the final (M1)A1 for obtaining any of the following forms: 

fn'x=nxna-xna-x-xxa-x;   fn'x=nxna-xnxa-xa-x-x;

        fn'x=nxn-1a-xn-xa-xn-1;

        fn'x=a-xn-1nxn-1a-xn-nxn

 

 

METHOD 2

fnx=xa-xn           (M1)

=ax-x2n            A1

attempts to use the chain rule           (M1)

fn'x=na-2xax-x2n-1            A1A1


Note:
Award A1 for na-2x and A1 for ax-x2n-1.


fn'x=nxn-1a-2xa-xn-1            AG

 

[5 marks]

c.

x=0, x=a2, x=a            A2

Note: Award A1 for either two correct solutions or for obtaining x=0, x=-a, x=-a2
       
  Award A0 otherwise.

 

[2 marks]

d.

attempts to find an expression for fna2             (M1)

fna2=a2na-a2n

=a2na2n  =a22n,=a2n2            A1


EITHER

since a+, a22n>0  (for n+, n>1 and so fna2>0)                R1


Note: Accept any logically equivalent conditions/statements on a and n.
        Award R0 if any conditions/statements specified involving a, n or both are incorrect.

 

OR

(since a+), a2 raised to an even power (2n) (or equivalent reasoning) is always positive (and so  fna2>0)                R1


Note: The condition a+ is given in the question. Hence some candidates will assume a+ and not state it. In these instances, award R1 for a convincing argument.
        Accept any logically equivalent conditions/statements on on a and n.
        Award R0 if any conditions/statements specified involving an or both are incorrect.


THEN

so a2, fna2 is always above the horizontal axis            AG


Note: Do not award (M1)A0R1.

 

[3 marks]

e.

METHOD 1

fn'a4=na4n-1a-a2a-a4n-1  =na4n-1a23a4n-1            A1


EITHER

na4n-1a23a4n-1>0 as a+ and n+                R1


OR

na4n-1,a-a2 and a-a4n-1 are all >0                R1

 

Note: Do not award A0R1.
        Accept equivalent reasoning on correct alternative expressions for fn'a4 and accept any logically equivalent conditions/statements on a and n.

        Exceptions to the above are condone n>1 and condone n>0.

        An alternative form for fn'a4 is 2n3n-1a42n-1.


THEN

hence fn'a4>0                 AG

 

METHOD 2

fn0=0 and fna2>0            A1

(since fn is continuous and there are no stationary points between x=0 and x=a2)

the gradient (of the curve) must be positive between x=0 and x=a2                 R1


Note: Do not award A0R1.


hence fn'a4>0                 AG

 

[2 marks]

f.

fn'-1=n-1n-1a+2a+1n-1

for n even:

n-1n-1=-n<0  (and a+2,a+1n-1 are both >0)                R1

fn'-1<0            A1

fn'0=0 and fn'a4>0  (seen anywhere)            A1

 

Note: Candidates can give arguments based on the sign of -1n-1 to obtain the R mark.
        For example, award R1 for the following:
        If n is even, then n-1 is odd and hence -1n-1<0 =-1.
        Do not award R0A1.
        The second A1 is independent of the other two marks.
        The A marks can be awarded for correct descriptions expressed in words.
        Candidates can state (0,0) as a point of zero gradient from part (d) or show, state or explain (words or diagram) that fn'0=0. The last mark can be awarded for a clearly labelled diagram showing changes in the sign of the gradient.
        The last A1 can be awarded for use of a specific case (e.g. n=2).


hence (0,0) is a local minimum point            AG

 

[3 marks]

g.i.

for n odd:

n-1n-1=n<0, (and a+2,a+1n-1 are both >0)  so fn'-1>0               R1


Note: Candidates can give arguments based on the sign of -1n-1 to obtain the R mark.
        For example, award R1 for the following:
        If n is odd, then n-1 is even and hence -1n-1>0 =1.


fn'0=0 and fn'a4>0  (seen anywhere)            A1


Note: The A1 is independent of the R1.
         Candidates can state 0,0 as a point of zero gradient from part (d) or show, state or explain (words or diagram) that fn'0=0. The last A mark can be awarded for a clearly labelled diagram showing changes in the sign of the gradient.
        The last A1 can be awarded for use of a specific case (e.g. n=3).

 

hence (0,0) is a point of inflexion with zero gradient           AG

 

[2 marks]

g.ii.

considers the parity of n            (M1)


Note: Award M1 for stating at least one specific even value of n.


n must be even (for four solutions)           A1


Note: The above 2 marks are independent of the 3 marks below.

 

0<k<a22n           A1A1A1

 

Note: Award A1 for the correct lower endpoint, A1 for the correct upper endpoint and A1 for strict inequality signs.

         The third A1 (strict inequality signs) can only be awarded if A1A1 has been awarded.
         For example, award A1A1A0 for 0ka22n. Award A1A0A0 for k>0.

         Award A1A0A0 for 0<k<fna2.

 

[5 marks]

h.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.
[N/A]
g.i.
[N/A]
g.ii.
[N/A]
h.



This question asks you to explore the behaviour and key features of cubic polynomials of the form x3-3cx+d.

 

Consider the function fx=x3-3cx+2 for x and where c is a parameter, c.

The graphs of y=f(x) for c=-1 and c=0 are shown in the following diagrams.


                                                                    c=-1                                                                               c=0

On separate axes, sketch the graph of y=f(x) showing the value of the y-intercept and the coordinates of any points with zero gradient, for

Hence, or otherwise, find the set of values of c such that the graph of y=f(x) has

Given that the graph of y=f(x) has one local maximum point and one local minimum point, show that

Hence, for c>0, find the set of values of c such that the graph of y=f(x) has

c=1.

[3]
a.i.

c=2.

[3]
a.ii.

Write down an expression for f'(x).

[1]
b.

a point of inflexion with zero gradient.

[1]
c.i.

one local maximum point and one local minimum point.

[2]
c.ii.

no points where the gradient is equal to zero.

[1]
c.iii.

the y-coordinate of the local maximum point is 2c32+2.

[3]
d.i.

the y-coordinate of the local minimum point is -2c32+2.

[1]
d.ii.

exactly one x-axis intercept.

[2]
e.i.

exactly two x-axis intercepts.

[2]
e.ii.

exactly three x-axis intercepts.

[2]
e.iii.

Consider the function g(x)=x3-3cx+d for x and where c , d.

Find all conditions on c and d such that the graph of y=g(x) has exactly one x-axis intercept, explaining your reasoning.

[6]
f.

Markscheme

c=1: positive cubic with correct y-intercept labelled          A1

local maximum point correctly labelled          A1

local minimum point correctly labelled          A1

 

[3 marks]

a.i.

c=2: positive cubic with correct y-intercept labelled          A1

local maximum point correctly labelled          A1

local minimum point correctly labelled          A1

 

Note: Accept the following exact answers:
          Local maximum point coordinates -2,2+42.
          Local minimum point coordinates 2,2-42.

 

[3 marks]

a.ii.

f'(x) =3x2-3c       A1

 

Note: Accept 3x2-3c (an expression).

 

[1 mark]

b.

c=0       A1

 

[1 mark]

c.i.

considers the number of solutions to their f'(x)=0         (M1)

3x2-3c=0

c>0          A1

 

[2 marks]

c.ii.

c<0          A1

 

Note: The (M1) in part (c)(ii) can be awarded for work shown in either (ii) or (iii). 

 

[1 mark]

c.iii.

attempts to solve their f'(x)=0 for x        (M1)

x±c        (A1)

 

Note: Award (A1) if either x=-c or x=c is subsequently considered.
          Award the above (M1)(A1) if this work is seen in part (c).

 

correctly evaluates f-c        A1  

f-c=-c32+3c32+2 =-cc+3cc+2

the y-coordinate of the local maximum point is 2c32+2        AG

 

[3 marks]

d.i.

 

correctly evaluates fc        A1  

fc=c32-3c32+2 =cc-3cc+2

the y-coordinate of the local minimum point is -2c32+2        AG

 

[1 mark]

d.ii.

the graph of y=fx will have one x-axis intercept if

EITHER

-2c32+2>0 (or equivalent reasoning)         R1

 

OR

the minimum point is above the x-axis         R1

 

Note: Award R1 for a rigorous approach that does not (only) refer to sketched graphs.

 

THEN

0<c<1        A1  

 

Note: Condone c<1. The A1 is independent of the R1.

 

[2 marks]

e.i.

the graph of y=fx will have two x-axis intercepts if

EITHER

-2c32+2=0 (or equivalent reasoning)         (M1)

 

OR

evidence from the graph in part(a)(i)         (M1)

 

THEN

c=1        A1  

  

[2 marks]

e.ii.

the graph of y=fx will have three x-axis intercepts if

EITHER

-2c32+2<0 (or equivalent reasoning)         (M1)

 

OR

reasoning from the results in both parts (e)(i) and (e)(ii)       (M1)

 

THEN

c>1        A1  

  

[2 marks]

e.iii.

case 1:

c0 (independent of the value of d)        A1 

EITHER

g'(x)=0 does not have two solutions (has no solutions or 1 solution)                   R1


OR

g'x0  for  x~                   R1


OR

the graph of y=fx has no local maximum or local minimum points, hence any vertical translation of this graph (y=gx) will also have no local maximum or local minimum points                   R1


THEN

therefore there is only one x-axis intercept        AG

 

Note: Award at most A0R1 if only c<0 is considered.

 


case 2

c>0

-c,2c32+d is a local maximum point and c,-2c32+d is a local minimum point              (A1)

 

Note: Award (A1) for a correct y-coordinate seen for either the maximum or the minimum.

 

considers the positions of the local maximum point and/or the local minimum point              (M1)

 

EITHER
considers both points above the x-axis or both points below the x-axis


OR

considers either the local minimum point only above the x-axis OR the local maximum point only below the x-axis


THEN

d>2c32 (both points above the x-axis)        A1 

d<-2c32 (both points above the x-axis)        A1 

 

Note: Award at most (A1)(M1)A0A0 for case 2 if c>0 is not clearly stated.

 

[6 marks]

f.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.i.
[N/A]
c.ii.
[N/A]
c.iii.
[N/A]
d.i.
[N/A]
d.ii.
[N/A]
e.i.
[N/A]
e.ii.
[N/A]
e.iii.
[N/A]
f.



This question asks you to explore properties of a family of curves of the type y2=x3+ax+b for various values of a and b, where a, b.

On the same set of axes, sketch the following curves for -2x2 and -2y2, clearly indicating any points of intersection with the coordinate axes.

Now, consider curves of the form y2=x3+b, for x-b3, where b+.

Next, consider the curve y2=x3+x, x0.

The curve y2=x3+x has two points of inflexion. Due to the symmetry of the curve these points have the same x-coordinate.

P(x, y) is defined to be a rational point on a curve if x and y are rational numbers.

The tangent to the curve y2=x3+ax+b at a rational point P intersects the curve at another rational point Q.

Let C be the curve y2=x3+2, for x-23. The rational point P(-1, -1) lies on C.

y2=x3, x0

[2]
a.i.

y2=x3+1, x-1

[2]
a.ii.

Write down the coordinates of the two points of inflexion on the curve y2=x3+1.

[1]
b.i.

By considering each curve from part (a), identify two key features that would distinguish one curve from the other.

[1]
b.ii.

By varying the value of b, suggest two key features common to these curves.

[2]
c.

Show that dydx=±3x2+12x3+x, for x>0.

[3]
d.i.

Hence deduce that the curve y2=x3+x has no local minimum or maximum points.

[1]
d.ii.

Find the value of this x-coordinate, giving your answer in the form x=p3+qr, where p, q, r.

[7]
e.

Find the equation of the tangent to C at P.

[2]
f.i.

Hence, find the coordinates of the rational point Q where this tangent intersects C, expressing each coordinate as a fraction.

[2]
f.ii.

The point S(-1 , 1) also lies on C. The line [QS] intersects C at a further point. Determine the coordinates of this point.

[5]
g.

Markscheme

approximately symmetric about the x-axis graph of y2=x3         A1

including cusp/sharp point at (0, 0)         A1

 

[2 marks]

 

Note: Final A1 can be awarded if intersections are in approximate correct place with respect to the axes shown. Award A1A1A1A0 if graphs ‘merge’ or ‘cross’ or are discontinuous at x-axis but are otherwise correct. Award A1A0A0A0 if only one correct branch of both curves are seen.

Note: If they sketch graphs on separate axes, award a maximum of 2 marks for the ‘best’ response seen. This is likely to be A1A1A0A0.

a.i.

approximately symmetric about the x-axis graph of y2=x3+1 with approximately correct gradient at axes intercepts        A1
some indication of position of intersections at x=1, y=±1         A1

[2 marks]

 

Note: Final A1 can be awarded if intersections are in approximate correct place with respect to the axes shown. Award A1A1A1A0 if graphs ‘merge’ or ‘cross’ or are discontinuous at x-axis but are otherwise correct. Award A1A0A0A0 if only one correct branch of both curves are seen.

Note: If they sketch graphs on separate axes, award a maximum of 2 marks for the ‘best’ response seen. This is likely to be A1A1A0A0.

a.ii.

0, 1 and 0, -1       A1

 

[1 mark]

b.i.

Any two from:

y2=x3 has a cusp/sharp point, (the other does not)

graphs have different domains

y2=x3+1 has points of inflexion, (the other does not)

graphs have different x-axis intercepts (one goes through the origin, and the other does not)

graphs have different y-axis intercepts      A1

 

Note: Follow through from their sketch in part (a)(i). In accordance with marking rules, mark their first two responses and ignore any subsequent.

 

[1 mark]

b.ii.

Any two from:

as , x, y±

as x, y2=x3+b is approximated by y2=x3 (or similar)

they have x intercepts at x=-b3

they have y intercepts at y=±b

they all have the same range

y=0 (or x-axis) is a line of symmetry

they all have the same line of symmetry y=0

they have one x-axis intercept

they have two y-axis intercepts

they have two points of inflexion

at x-axis intercepts, curve is vertical/infinite gradient

there is no cusp/sharp point at x-axis intercepts     A1A1

 

Note: The last example is the only valid answer for things “not” present. Do not credit an answer of “they are all symmetrical” without some reference to the line of symmetry.

Note: Do not allow same/ similar shape or equivalent.

Note: In accordance with marking rules, mark their first two responses and ignore any subsequent.

 

[2 marks]

c.

METHOD 1

attempt to differentiate implicitly         M1

2ydydx=3x2+1         A1

dydx=3x2+12y  OR  ±2x3+xdydx=3x2+1         A1

dydx=±3x2+12x3+x         AG

 

METHOD 2

attempt to use chain rule y=±x3+x         M1

dydx=±12x3+x-123x2+1         A1A1

 

Note: Award A1 for ±12x3+x-12, A1 for 3x2+1

 

dydx=±3x2+12x3+x         AG

 

[3 marks]

d.i.

EITHER

local minima/maxima occur whendydx=0

1+3x2=0 has no (real) solutions (or equivalent)         R1


OR

x20 3x2+1>0, so dydx0          R1


THEN

so, no local minima/maxima exist          AG

 

[1 mark]

d.ii.

EITHER

attempt to use quotient rule to find d2ydx2          M1

d2ydx2=±12xx+x3-1+3x2x+x3-121+3x24x+x3          A1A1


Note:
Award A1 for correct 12xx+x3 and correct denominator, A1 for correct -1+3x2x+x3-121+3x2.

Note: Future A marks may be awarded if the denominator is missing or incorrect.


stating or using d2ydx2=0 (may be seen anywhere)           (M1)

12xx+x3=1+3x2x+x3-121+3x2


OR

attempt to use product rule to find d2ydx2          M1

d2ydx2=123x2+1-123x2+1x3+x-32+3xx3+x-12          A1A1


Note:
Award A1 for correct first term, A1 for correct second term.


setting d2ydx2=0           (M1)


OR

attempts implicit differentiation on 2ydydx=3x2+1          M1

2dydx2+2yd2ydx2=6x          A1

recognizes that d2ydx2=0           (M1)

dydx=±3x

±3x2+12x3+x=±3x           (A1)


THEN

12xx+x3=1+3x22

12x2+12x4=9x4+6x2+1

3x4+6x2-1=0          A1

attempt to use quadratic formula or equivalent           (M1)

x2=-6±486

x>0x=23-33 p=2, q=-3, r=3          A1

 

Note: Accept any integer multiple of p, q and r (e.g. 4,-6 and 6).

 

[7 marks]

e.

attempt to find tangent line through -1, -1           (M1)

y+1=-32x+1  OR  y=-1.5x-2.5           A1

 

[2 marks]

f.i.

attempt to solve simultaneously with y2=x3+2           (M1)


Note: The M1 mark can be awarded for an unsupported correct answer in an incorrect format (e.g. (4.25, -8.875)).


obtain 174,-718           A1

 

[2 marks]

f.ii.

attempt to find equation of [QS]           (M1)

y-1x+1=-7942=-1.88095           (A1)

solve simultaneously with y2=x3+2           (M1)

x=0.28798=127441        A1

y=-1.4226=131759261        A1

0.228,-1.42

 

OR

attempt to find vector equation of [QS]           (M1)

xy=-11+λ214-798           (A1)

x=-1+214λ

y=1-798λ

attempt to solve 1-798λ2=-1+214λ3+2           (M1)

λ=0.2453

x=0.28798=127441        A1

y=-1.4226=131759261        A1

0.228,-1.42

 

[5 marks]

g.

Examiners report

This was a relatively straightforward start, though it was disappointing to see so many candidates sketch their graphs on two separate axes, despite the question stating they should be sketched on the same axes.

a.i.
[N/A]
a.ii.

Of those candidates producing clear sketches, the vast majority were able to recognise the points of inflexion and write down their coordinates. A small number embarked on a mostly fruitless algebraic approach rather than use their graphs as intended. The distinguishing features between curves tended to focus on points of intersection with the axes, which was accepted. Only a small number offered ideas such as y on both curves. A number of (incorrect) suggestions were seen, stating that both curves tended towards a linear asymptote.

b.i.
[N/A]
b.ii.

A majority of candidates' suggestions related to the number of intersection points with the coordinate axes, while the idea of the x-axis acting as a line of symmetry was also often seen.

c.

The required differentiation was straightforward for the majority of candidates.

d.i.
[N/A]
d.ii.

The majority employed the quotient rule here, often doing so successfully to find a correct expression for d2ydx2. Despite realising that d2ydx2=0, the resulting algebra to find the required solution proved a step too far for most. A number of slips were seen in candidates' working, though better candidates were able to answer the question confidently.

e.

Mistakes proved to be increasingly common by this stage of the paper. Various equations of lines were suggested, with the incorrect y=1.5x+2.5 appearing more than once. Only the better candidates were able to tackle the final part of the question with any success; it was pleasing to see a number of clear algebraic (only) approaches, though this was not necessary to obtain full marks.

f.i.
[N/A]
f.ii.

Significant work on this question part was rarely seen, and it may have been the case that many candidates chose to spend their remaining time on the second question, especially if they felt they were making little progress with part f. Having said that, correct final answers were seen from better candidates, though these were few and far between.

g.



This question asks you to explore some properties of polygonal numbers and to determine and prove interesting results involving these numbers.


A polygonal number is an integer which can be represented as a series of dots arranged in the shape of a regular polygon. Triangular numbers, square numbers and pentagonal numbers are examples of polygonal numbers.

For example, a triangular number is a number that can be arranged in the shape of an equilateral triangle. The first five triangular numbers are 1, 3, 6, 10 and 15.

The following table illustrates the first five triangular, square and pentagonal numbers respectively. In each case the first polygonal number is one represented by a single dot.

For an r-sided regular polygon, where r+, r3, the nth polygonal number Prn is given by

Prn=r-2n2-r-4n2, where n+.

Hence, for square numbers, P4n=4-2n2-4-4n2=n2.

The nth pentagonal number can be represented by the arithmetic series

P5n=1+4+7++3n-2.

For triangular numbers, verify that P3n=nn+12.

[2]
a.i.

The number 351 is a triangular number. Determine which one it is.

[2]
a.ii.

Show that P3n+P3n+1n+12.

[2]
b.i.

State, in words, what the identity given in part (b)(i) shows for two consecutive triangular numbers.

[1]
b.ii.

For n=4, sketch a diagram clearly showing your answer to part (b)(ii).

[1]
b.iii.

Show that 8P3n+1 is the square of an odd number for all n+.

[3]
c.

Hence show that P5n=n3n-12 for n+.

[3]
d.

By using a suitable table of values or otherwise, determine the smallest positive integer, greater than 1, that is both a triangular number and a pentagonal number.

[5]
e.

A polygonal number, Prn, can be represented by the series

Σm=1n1+m-1r-2 where r+, r3.

Use mathematical induction to prove that Prn=r-2n2-r-4n2 where n+.

[8]
f.

Markscheme

P3n=3-2n2-3-4n2  OR  P3n=n2--n2        A1

P3n=n2+n2        A1

 

Note: Award A0A1 if P3n=n2+n2 only is seen.

Do not award any marks for numerical verification.

 

so for triangular numbers, P3n=nn+12        AG

 

[2 marks]

a.i.

METHOD 1

uses a table of values to find a positive integer that satisfies P3n=351        (M1)

for example, a list showing at least 3 consecutive terms 325, 351, 378

 

Note: Award (M1) for use of a GDC’s numerical solve or graph feature.

 

n=26  (26th triangular number)        A1

 

Note: Award A0 for n=27,26. Award A0 if additional solutions besides n=26 are given.

 

METHOD 2

attempts to solve nn+12=351 n2+n-702=0 for n        (M1)

n=-1±12-41-7022  OR  n-26n+27=0

n=26  (26th triangular number)        A1

 

Note: Award A0 for n=27,26. Award A0 if additional solutions besides n=26 are given.

 

[2 marks]

a.ii.

attempts to form an expression for P3n+P3n+1 in terms of n        M1

 

EITHER

P3n+P3n+1nn+12+n+1n+22

n+12n+22 2n+1n+12         A1

 

OR

P3n+P3n+1n22+n2+n+122+n+12

n2+n2+n2+2n+1+n+12  n2+2n+1         A1

 

THEN

n+12         AG

 

[2 marks]

b.i.

the sum of the nth and n+1th triangular numbers

is the n+1th square number         A1

 

[1 mark]

b.ii.

      A1

 

Note: Accept equivalent single diagrams, such as the one above, where the 4th and 5th triangular numbers and the 5th square number are clearly shown.
Award A1 for a diagram that show P34 (a triangle with 10 dots) and P35 (a triangle with 15 dots) and P45 (a square with 25 dots).

 

[1 mark]

b.iii.

METHOD 1

8P3n+1=8nn+12+1 =4nn+1+1          A1

attempts to expand their expression for 8P3n+1          (M1)

=4n2+4n+1

=2n+12          A1

and 2n+1 is odd          AG

 

METHOD 2

8P3n+1=8n+12-P3n+1+1=8n+12-n+1n+22+1  A1

attempts to expand their expression for 8P3n+1          (M1)

8n2+2n+1-4n2+3n+2+1 =4n2+4n+1

=2n+12          A1

and 2n+1 is odd          AG

 

Method 3

8P3n+1=8nn+12+1 =An+B2 (where A,B+)          A1

attempts to expand their expression for 8P3n+1          (M1)

4n2+4n+1 =A2n2+2ABn+B2

now equates coefficients and obtains B=1 and A=2

=2n+12          A1

and 2n+1 is odd          AG

 

[3 marks]

c.

EITHER

u1=1 and d=3          (A1)

substitutes their u1 and their d into P5n=n22u1+n-1d          M1

P5n=n22+3n-1 =n22+3n-3          A1

 

OR

u1=1 and un=3n-2          (A1)

substitutes their u1 and their un into P5n=n2u1+un          M1

P5n=n21+3n-2          A1

 

OR

P5n=31-2+32-2+33-2+3n-2

P5n=31+32+33++3n-2n =31+2+3++n-2n        (A1)

substitutes nn+12 into their expression for P5n          M1

P5n=3nn+12-2n

P5n=n23n+1-4          A1

 

OR

attempts to find the arithmetic mean of n terms          (M1)

=1+3n-22          A1

multiplies the above expression by the number of terms n

P5n=n21+3n-2          A1

 

THEN

so P5n=n3n-12          AG

 

[3 marks]

d.

METHOD 1

forms a table of P3n values that includes some values for n>5         (M1)

forms a table of P5m values that includes some values for m>5         (M1)

 

Note: Award (M1) if at least one P3n value is correct. Award (M1) if at least one P5m value is correct. Accept as above for n2+n values and 3m2-m values.

 

n=20 for triangular numbers          (A1)

m=12 for pentagonal numbers          (A1)

 

Note: Award (A1) if n=20 is seen in or out of a table. Award (A1) if m=12 is seen in or out of a table. Condone the use of the same parameter for triangular numbers and pentagonal numbers, for example, n=20 for triangular numbers and n=12 for pentagonal numbers.

 

210 (is a triangular number and a pentagonal number)          A1

 

Note: Award all five marks for 210 seen anywhere with or without working shown.

 

METHOD 2

EITHER

attempts to express P3n=P5m as a quadratic in n         (M1)

n2+n+m-3m2=0 (or equivalent)

attempts to solve their quadratic in n         (M1)

n=-1±12m2-4m+12=-1±12-4m-3m22

 

OR

attempts to express P3n=P5m as a quadratic in m         (M1)

3m2-m-n2+n=0 (or equivalent)

attempts to solve their quadratic in m         (M1)

m=1±12n2-12n+16=1±-12+12n2+n6

 

THEN

n=20 for triangular numbers          (A1)

m=12 for pentagonal numbers          (A1)

210 (is a triangular number and a pentagonal number)          A1

 

METHOD 3

nn+12=m3m-12

let n=m+k n>m and so 3m2-m=m+km+k+1        M1

2m2-2k+1m-k2+k=0          A1

attempts to find the discriminant of their quadratic

and recognises that this must be a perfect square        M1

Δ=4k+12+8k2+k

N2=4k+12+8k2+k =4k+13k+1

determines that k=8 leading to 2m2-18m-72=0m=-3,12 and so m=12          A1

210 (is a triangular number and a pentagonal number)          A1

 

 

METHOD 4

nn+12=m3m-12

let m=n-k m<n and so n2+n=n-k3n-k-1       M1

2n2-23k+1n+3k2+k=0          A1

attempts to find the discriminant of their quadratic

and recognises that this must be a perfect square        M1

Δ=43k+12-83k2+k

N2=43k+12-83k2+k =4k+13k+1

determines that k=8 leading to 2n2-50n+200=0n=5,20 and so n=20          A1

210 (is a triangular number and a pentagonal number)          A1

 

[5 marks]

e.

Note: Award a maximum of R1M0M0A1M1A1A1R0 for a ‘correct’ proof using n and n+1.

 

consider n=1: Pr1=1+1-1r-2=1 and Pr1=r-212-r-412=1

so true for n=1              R1 

 

Note: Accept Pr1=1 and Pr1=r-212-r-412=1.
Do not accept one-sided considerations such as 'Pr1=1 and so true for n=1'.
Subsequent marks after this R1 are independent of this mark can be awarded.

 

Assume true for n=k, ie. Prk=r-2k2-r-4k2          M1

 

Note: Award M0 for statements such as “let n=k ”. The assumption of truth must be clear.
Subsequent marks after this M1 are independent of this mark and can be awarded.

 

Consider n=k+1:

(Prk+1 can be represented by the sum

Σm=1k+11+m-1r-2=Σm=1k1+m-1r-2+1+kr-2 and so

Prk+1=r-2k2-r-4k2+1+kr-2  Prk+1=Prk+1+kr-2         M1

=r-2k2-r-4k+2+2kr-22         A1

 =r-2k2+2k-r-4k+22

=r-2k2+2k+1-r-2-r-4k+22         M1

=r-2k+12-r-4k-r-42          (A1)

 =r-2k+12-r-4k+12         A1

hence true for n=1 and n=k true n=k+1 true         R1

therefore true for all n+

 

Note: Only award the final R1 if the first five marks have been awarded. Award marks as appropriate for solutions that expand both the LHS and (given) RHS of the equation.

 

[8 marks]

f.

Examiners report

Part (a) (i) was generally well done. Unfortunately, some candidates adopted numerical verification. Part (a) (ii) was generally well done with the majority of successful candidates using their GDC judiciously and disregarding = −27 as a possible solution. A few candidates interpreted the question as needing to deal with P3(351).

Although part (b) (i) was generally well done, a significant number of candidates laboured unnecessarily to show the required result. Many candidates set their LHS to equal the RHS throughout the solution. Part (b) (ii) was generally not well done with many candidates unable to articulate clearly in words and symbols what the given identity shows for the sum of two consecutive triangular numbers. In part (b) (iii), most candidates were unable to produce a clear diagram illustrating the identity stated in part (b) (i). 

Part (c) was reasonably well done. Most candidates were able to show algebraically that 8P3(n)+1=4n2+4n+1. A good number of candidates were then able to express 4n2+4n+1 as (2n+1)2 and conclude that (2n+1) is odd. Rather than making the connection that 4n2+4n+1 is a perfect square, many candidates attempted instead to analyse the parity of either 4n(n+1)+1 or 4n2+4n+1. As with part (b) (i), many candidates set their LHS to equal the RHS throughout the solution. A number of candidates unfortunately adopted numerical verification.

Part (d) was not answered as well as anticipated with many candidates not understanding what was
required. Instead of using the given arithmetic series to show that P5(n)=n(3n-1)2, a large number of
candidates used P5(n)=(5-2)n2-(5-4)n2 . Unfortunately, a number of candidates adopted numerical verification.

In part (e), the overwhelming majority of candidates who successfully determined that 210 is the smallest positive integer greater than 1 that is both triangular and pentagonal used a table of values. Unfortunately, a large proportion of these candidates seemingly spent quite a few minutes listing the first 20 triangular numbers and the first 12 pentagonal numbers. And it can be surmised that a number of these candidates constructed their table of values either without the use of a GDC or with the arithmetic functionality of a GDC rather than with a GDC's table of values facility. Candidates should be aware that a relevant excerpt from a table of values is sufficient evidence of correct working. A number of candidates started constructing a table of values but stopped before identifying 210. Disappointingly, a significant number of candidates attempted to solve P3(n)=P5(n) for n.

Part (f) proved beyond the reach of most with only a small number of candidates successfully proving the given result. A significant number of candidates were unable to show that the result is true for n=1. A number of candidates established the validity of the base case for the RHS only while a number of other candidates attempted to prove the base case for r = 3. A large number of candidates did not state the inductive step correctly with the assumption of truth not clear. A number of candidates then either attempted to work backwards from the given result or misinterpreted the question and attempted to prove the result stated in the question stem rather than the result stated in the question. Some candidates who were awarded the first answer mark when considering the n=k+1 case were unable to complete the square or equivalent simplification correctly. Disappointingly, a significant number listed the steps involved in an induction proof without engaging in the actual proof.

a.i.
[N/A]
a.ii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.



Let A be the set { x | x R ,   x 0 } . Let B be the set { x | x ] 1 ,   + 1 [ ,   x 0 } .

A function f : A B is defined by f ( x ) = 2 π arctan ( x ) .

Let D be the set { x | x R ,   x > 0 } .

A function g : R D is defined by g ( x ) = e x .

(i)     Sketch the graph of y = f ( x ) and hence justify whether or not f is a bijection.

(ii)     Show that A is a group under the binary operation of multiplication.

(iii)     Give a reason why B is not a group under the binary operation of multiplication.

(iv)     Find an example to show that f ( a × b ) = f ( a ) × f ( b ) is not satisfied for all a ,   b A .

[13]
a.

(i)     Sketch the graph of y = g ( x ) and hence justify whether or not g is a bijection.

(ii)     Show that g ( a + b ) = g ( a ) × g ( b ) for all a ,   b R .

(iii)     Given that { R ,   + } and { D ,   × } are both groups, explain whether or not they are isomorphic.

[8]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

(i)     N16/5/MATHL/HP3/ENG/TZ0/SG/M/02.a.i     A1

 

Notes: Award A1 for general shape, labelled asymptotes, and showing that x 0 .

 

graph shows that it is injective since it is increasing or by the horizontal line test     R1

graph shows that it is surjective by the horizontal line test     R1

 

Note: Allow any convincing reasoning.

 

so f is a bijection     A1

(ii)     closed since non-zero real times non-zero real equals non-zero real     A1R1

we know multiplication is associative     R1

identity is 1     A1

inverse of x is 1 x ( x 0 )      A1

hence it is a group     AG

(iii)     B does not have an identity     A2

hence it is not a group     AG

(iv)     f ( 1 × 1 ) = f ( 1 ) = 1 2  whereas f ( 1 ) × f ( 1 ) = 1 2 × 1 2 = 1 4  is one counterexample     A2

hence statement is not satisfied     AG

[13 marks]

a.

N16/5/MATHL/HP3/ENG/TZ0/SG/M/02.b

award A1 for general shape going through (0, 1) and with domain R      A1

graph shows that it is injective since it is increasing or by the horizontal line test and graph shows that it is surjective by the horizontal line test     R1

 

Note: Allow any convincing reasoning.

 

so g   is a bijection     A1

(ii)     g ( a + b ) = e a + b  and g ( a ) × g ( b ) = e a × e b = e a + b      M1A1

hence g ( a + b ) = g ( a ) × g ( b )      AG

(iii)     since g is a bijection and the homomorphism rule is obeyed     R1R1

the two groups are isomorphic     A1

[8 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.



This question asks you to investigate conditions for the existence of complex roots of polynomial equations of degree 3 and 4.

 
The cubic equation x3+px2+qx+r=0, where p, q, r  , has roots α, β and γ.

Consider the equation x3-7x2+qx+1=0, where q.

Noah believes that if p23q then α, β and γ are all real.

Now consider polynomial equations of degree 4.

The equation x4+px3+qx2+rx+s=0, where p, q, r, s, has roots α, β, γ and δ.

In a similar way to the cubic equation, it can be shown that:

p=-(α+β+γ+δ)

q=αβ+αγ+αδ+βγ+βδ+γδ

r=-(αβγ+αβδ+αγδ+βγδ)

s=αβγδ.

The equation x4-9x3+24x2+22x-12=0, has one integer root.

By expanding x-αx-βx-γ show that:

p=-α+β+γ

q=αβ+βγ+γα

r=-αβγ.

[3]
a.

Show that p2-2q=α2+β2+γ2.

[3]
b.i.

Hence show that α-β2+β-γ2+γ-α2=2p2-6q.

[3]
b.ii.

Given that p2<3q, deduce that α, β and γ cannot all be real.

[2]
c.

Using the result from part (c), show that when q=17, this equation has at least one complex root.

[2]
d.

By varying the value of q in the equation x3-7x2+qx+1=0, determine the smallest positive integer value of q required to show that Noah is incorrect.

[2]
e.i.

Explain why the equation will have at least one real root for all values of q.

[1]
e.ii.

Find an expression for α2+β2+γ2+δ2 in terms of p and q.

[3]
f.i.

Hence state a condition in terms of p and q that would imply x4+px3+qx2+rx+s=0 has at least one complex root.

[1]
f.ii.

Use your result from part (f)(ii) to show that the equation x4-2x3+3x2-4x+5=0 has at least one complex root.

[1]
g.

State what the result in part (f)(ii) tells us when considering this equation x4-9x3+24x2+22x-12=0.

[1]
h.i.

Write down the integer root of this equation.

[1]
h.ii.

By writing x4-9x3+24x2+22x-12 as a product of one linear and one cubic factor, prove that the equation has at least one complex root.

[4]
h.iii.

Markscheme

attempt to expand x-αx-βx-γ            M1

=x2-α+βx+αβx-γ  OR  =x-αx2-β+γx+βγ         A1

x3+px2+qx+r=x3-α+β+γx2+αβ+βγ+γαx-αβγ         A1

comparing coefficients:

p=-α+β+γ         AG 

q=αβ+βγ+γα         AG 

r=-αβγ         AG 

 

Note: For candidates who do not include the AG lines award full marks.

 

[3 marks]

a.

p2-2q=α+β+γ2-2αβ+βγ+γα            (A1)

attempt to expand α+β+γ2            (M1)

=α2+β2+γ2+2αβ+βγ+γα-2αβ+βγ+γα or equivalent         A1

=α2+β2+γ2         AG 

 

Note: Accept equivalent working from RHS to LHS.

 

[3 marks]

b.i.

EITHER

attempt to expand α-β2+β-γ2+γ-α2            (M1)

=α2+β2-2αβ+β2+γ2-2βγ+γ2+α2-2γα         A1

=2α2+β2+γ2-2αβ+βγ+γα

=2p2-2q-2q or equivalent         A1

=2p2-6q         AG 


OR

attempt to write 2p2-6q in terms of α, β, γ            (M1)

=2p2-2q-2q

=2α2+β2+γ2-2αβ+βγ+γα         A1

=α2+β2-2αβ+β2+γ2-2βγ+γ2+α2-2γα         A1

=α-β2+β-γ2+γ-α2         AG 

 

Note: Accept equivalent working where LHS and RHS are expanded to identical expressions.

 

[3 marks]

b.ii.

p2<3q2p2-6q<0

α-β2+β-γ2+γ-α2<0         A1

if all roots were real α-β2+β-γ2+γ-α20         R1


Note:
Condone strict inequality in the R1 line.
Note: Do not award A0R1.


roots cannot all be real         AG 

 

[2 marks]

c.

p2=-72=49 and 3q=51         A1

so p2<3q the equation has at least one complex root         R1

 

Note: Allow equivalent comparisons; e.g. checking p2<6q

 

[2 marks]

d.

use of GDC (eg graphs or tables)         (M1)

q=12         A1

 

[2 marks]

e.i.

complex roots appear in conjugate pairs (so if complex roots occur the other root will be real OR all 3 roots will be real).

OR

a cubic curve always crosses the x-axis at at least one point.       R1

 

[1 mark]

e.ii.

attempt to expand α+β+γ+δ2           (M1)

α+β+γ+δ2=α2+β2+γ2+δ2+2αβ+αγ+αδ+βγ+βδ+γδ           (A1)

α2+β2+γ2+δ2=α+β+γ+δ2-2αβ+αγ+αδ+βγ+βδ+γδ

α2+β2+γ2+δ2=p2-2q          A1

 

[3 marks]

f.i.

p2<2q  OR  p2-2q<0          A1

 

Note: Allow FT on their result from part (f)(i).

 

[1 mark]

f.ii.

4<6  OR  22-2×3<0          R1

hence there is at least one complex root.         AG

 

Note: Allow FT from part (f)(ii) for the R mark provided numerical reasoning is seen.

 

[1 mark]

g.

p2>2q 81>2×24  (so) nothing can be deduced         R1

 

Note: Do not allow FT for the R mark.

 

[1 mark]

h.i.

-1          A1

 

[1 mark]

h.ii.

attempt to express as a product of a linear and cubic factor           M1

x+1x3-10x2+34x-12          A1A1

 

Note: Award A1 for each factor. Award at most A1A0 if not written as a product.

 

since for the cubic, p2<3q 100<102          R1

there is at least one complex root          AG

 

[4 marks]

h.iii.

Examiners report

The first part of this question proved to be very accessible, with the majority of candidates expanding their brackets as required, to find the coefficients p, q and r.

a.

The first part of this question was usually answered well, though presentation in the second part sometimes left a lot to be desired. The expression 2p2-2q-2q was expected to be seen more often, as a 'pivot' to reaching the required result. Algebra was often lengthy, but untidily so, sometimes leaving examiners to do some mental tidying up on behalf of the candidate.

b.i.
[N/A]
b.ii.

A good number of candidates recognised the reasoning required in this part of the question and were able to score both marks.

c.

Most candidates found applying this specific case to be very straightforward.

d.

Most candidates offered incorrect answers in the first part; despite their working suggested utilisation of the GDC, it was clear that many did not appreciate what the question was asking. The second part was usually answered well, with the idea of complex roots occurring in conjugate pairs being put to good use.

e.i.
[N/A]
e.ii.

Some very dubious algebra was seen here, and often no algebra at all. Despite this, a good number of candidates seemed to make the 'leap' to the correct expression p2-2q, perhaps fortuitously so in a number of cases.

f.i.
[N/A]
f.ii.

Of those finding p2-2q in part f, a surprising number of answers seen employed the test of checking whether p2<3q.

g.

Part i was usually not answered successfully, which may have been due to shortage of time. However, it was pleasing to see a number of candidates reach the end of the paper and successfully factorise the given quartic using a variety of methods. The final part required the p2<3q test. Though correct reasoning was sometimes seen, it was rare for this final mark to be gained.

h.i.
[N/A]
h.ii.
[N/A]
h.iii.